Extracted from:

Working in the Real World

This PDF file contains pages extracted from Practices of an Agile Developer, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF
copy, please visit http://www.pragmaticprogrammer.com

Note: This extract contains some colored text (particularly in code listing). This is
available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.
Copyright © 2005 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.


http://www.pragmaticprogrammer.com

You might get the impression that
experienced woodworkers never make
mistakes. I can assure you that isn'’t true.
Pros simply know how to salvage
their goofs.
» Jeff Miller, furniture maker and
e Chapter 7

Even on the most talented agile projects, things will go wrong. Bugs,
errors, defects, mistakes—whatever you want to call them, they will
happen.

The real problem with debugging is that it is not amenable to a time
box. You can time box a design meeting and decide to go with the best
idea at the end of some fixed time. But with a debugging session, an
hour, a day, or a week may come and go and find you no closer to
finding and fixing the problem.

You really can’t afford that sort of open-ended exposure on a project.
So, we have some techniques that might help, from keeping track of
previous solutions to providing more helpful clues in the event of a
problem.

To reuse your knowledge and effort better, it can help to Keep a Solu-
tions Log, and we’ll see how on the following page. When the compiler
warns you that something is amiss, you need to assume that Warnings
Are Really Errors and address them right away (that’s on page 132).

It can be very hard—even impossible—to track down problems in the
middle of a entire system. You have a much better chance at finding the
problem when you Attack Problems in Isolation, as we’ll see on page 136.
When something does go wrong, don’t hide the truth. Unlike some
government cover-up, you'll want to Report All Exceptions, as described
on page 139. Finally, when you do report that something has gone
awry, you have to be considerate of users, and Provide Useful Error
Messages. We'll see why on page 141.



KEEP A SOLUTIONS Loc <« 129

“Do you often get that déja vu feeling during development? Do
you often get that déja vu feeling during development? That’s |8

OK. You figured it out once. You can figure it out again.”

Facing problems (and solving them) is a way of life for developers. When
a problem arises, you want to solve it quickly. If a similar problem
occurs again, you want to remember what you did the first time and
fix it more quickly the next time. Unfortunately, sometimes you’ll see a
problem that looks the same as something you've seen before but can’t
remember the fix. This happens to us all the time.

Can’t you just search the Web for an answer? After all, the Internet
has grown to be this incredible resource, and you might as well put
that to good use. Certainly searching the Web for an answer is better
than wasting time in isolated efforts. However, it can be very time-
consuming. Sometimes you find the answers you're looking for; other
times, you end up reading a lot of opinions and ideas instead of real
solutions. It might be comforting to see how many other developers
have had the same problem, but what you need is a solution.

To be more productive than that, maintain
a log of problems faced and solutions found. Don’t getf burned twice
When a problem appears, instead of saying,
“Man, I've seen this before, but I have no clue how I fixed it,” you can
quickly look up the solution you've used in the past. Engineers have
done this for years: they call them daylogs.

You can choose any format that suits your needs. Here are some items
that you might want to include in your entries:

* Date of the problem
® Short description of the problem or issue

Detailed description of the solution

References to articles, and URLs, that have more details or related
information

Any code segments, settings, and snapshots of dialogs that may
be part of the solution or help you further understand the details

CLIcK HERE to purchase this book now.


http://www.pragmaticprogrammer.com/titles/pad

KEEP A SOLUTIONS Loc <« 130

04/01/2006: Installed new version of Qvm (2.1.6),
which fixed problem where cache entries never got
deleted.

04/27/2006: If you use KQED version 6 or earlier, you
have to rename the base directory to _kqged6 to avoid
a conflict with the in-house Core library. v

Figure 7.1: Example of a solutions log entry, with hyperlinks

Keep the log in a computer-searchable format. That way you can per-
form a keyword search to look up the details quickly. Figure 7.1 shows
a simple example, with hyperlinks to more information.

When you face a problem and you can’t find the solution in your log,
remember to update your log with the new details as soon as you do
figure out a solution.

Even better than maintaining a log is sharing it with others. Make it
part of your shared network drive so others can use it. Or create a Wiki,
and encourage other developers to use it and update it.

Maintain a log of problems and their solutions. Part of
fixing a problem is retaining details of the solution so you
can find and apply it later.

What It Feels Like

Your solutions log feels like part of your brain. You can find details on
particular issues and also get guidance on similar but different issues.

Keeping Your Balance

® You still need to spend more time solving problems than docu-
menting them. Keep it light and simple; it doesn’t have to be
publication quality.

CLIcK HERE to purchase this book now.


http://www.pragmaticprogrammer.com/titles/pad

KEEP A SOLUTIONS Loc <« 131

* Finding previous solutions is critical; use plenty of keywords that
will help you find an entry when needed.

¢ If a web search doesn’t find anyone else with the same problem,
perhaps you're using something incorrectly.

* Keep track of the specific version of the application, framework
or platform where the problem occurred. The same problem can
manifest itself differently on different platforms/versions.

* Record why the team made an important decision. That’s the sort
of detail that’s hard to remember six to nine months later, when
the decision needs to be revisited and recriminations fill the air.

CLIcK HERE to purchase this book now.


http://www.pragmaticprogrammer.com/titles/pad

WARNINGS ARE REALLY ERRORS <« 132

B> Warnings Are Really Errors

“Compiler warnings are just for the overly cautious and pedan-
tic. They're just warnings after all. If they were serious, they’'d
be errors, and you couldn’t compile. So just ignore them, and -
let ’er rip.”

When your program has a compilation error, the compiler or build tool
refuses to produce an executable. You don’'t have a choice—you have
to fix the error before moving on.

Warnings, unfortunately, are not like that. You can run the program
that generates compiler warnings if you want. What happens if you
ignore warnings and continue to develop your code? You're sitting on
a ticking time bomb, one that will probably go off at the worst possible
moment.

Some warnings are benign by-products of a fussy compiler (or inter-
preter), but others are not. For instance, a warning about a variable
not being used in the code is probably benign but may also allude to
the use of some other incorrect variable.

At a recent client site, Venkat found more than 300 warnings in an
application in production. One of the warnings that was being ignored
by the developers said this:

Assignment in conditional expression is always constant;
did you mean to use == instead of = ?

The offending code was something like this:

if (theTextBox.Visible = true)

In other words, that if will always evaluate as true, regardless of the
hapless theTextBox variable. It’s scary to see genuine errors such as this
slip through as warnings and be ignored.

Consider the following C# code:

public class Base

{
public virtual void foo()
{
Console.WriteLine( "Base.foo0");
¥
}

CLIcK HERE to purchase this book now.


http://www.pragmaticprogrammer.com/titles/pad

WARNINGS ARE REALLY ERRORS <« 133

public class Derived : Base

{
public virtual void foo()
{
Console.WriteLine( "Derived.foo");
¥
}

class Test

{
static void Main(string[] args)
{
Derived d = new Derived();
Base b = d;
d.foo();
b.foo();
}
¥

When you compile this code using the default Visual Studio 2003
project settings, you'll see the message “Build: 1 succeeded, O failed,
O skipped” at the bottom of the Output window. When you run the
program, you'll get this output:

Derived. foo
Base.foo

But this isn’t what you’d expect. You should see both the calls to foo()
end up in the Derived class. What went wrong? If you examine the
Output window closely, you'll find a warning message:

Warning. Derived.foo hides inherited member Base.foo

To make the current member override that implementation,
add the override keyword. Otherwise, you'd add the new keyword.

This was clearly an error—the code should use override instead of virtual
in the Derived class’s foo() method.! Imagine systematically ignoring
warnings like this in your code. The behavior of your code becomes
unpredictable, and its quality plummets.

You might argue that good unit tests will find these problems. Yes,
they will help (and you should certainly use good unit tests). But if the
compiler can detect this kind of problem, why not let it? It'll save you
both some time and some headaches.

1And this is an insidious trap for former C++ programmers; the program would work
as expected in C++.

CLIcK HERE to purchase this book now.


http://www.pragmaticprogrammer.com/titles/pad

WARNINGS ARE REALLY ERRORS <« 134

Find a way to tell your compiler to treat warnings as errors. If your
compiler allows you to fine-tune warning reporting levels, turn that
knob all the way up so no warnings are ignored. GCC compilers support
the -Werror flag, for example, and in Visual Studio, you can change the
project settings to treat warnings as errors.

That is the least you should do on a project. Unfortunately, if you go
that route, you will have to do it on each project you create. It'd be nice
to enable that more or less globally.

In Visual Studio, for instance, you can modify the project templates
(see .NET Gotchas [Sub05] for details) so any project you create on your
machine will have the option set, and in the current version of Eclipse,
you can change these settings under Window — Preferences — Java —
Compiler — Errors/Warnings. If you're using other languages or IDEs,
take time to find how you can treat warnings as errors in them.

While you're modifying settings, set those same flags in the continuous
integration tool that you use on your build machine. (For details on
continuous integration, see Practice 21, Different Makes a Difference,
on page 87.) This small change can have a huge impact on the quality
of the code that your team is checking into the source control system.

You want to get all of this set up right as you start the project; suddenly
turning warnings on partway through a project may be too overwhelm-
ing to handle.

Just because your compiler treats warnings lightly doesn’t mean you
should.

Treat warnings as errors. Checking in code with warn-
ings is just as bad as checking in code with errors or code
that fails its tests. No checked-in code should produce any
warnings from the build tools.

What It Feels Like

Warnings feel like...well, warnings. They are warning you about some-
thing, and that gets your attention.

CLIcK HERE to purchase this book now.


http://www.pragmaticprogrammer.com/titles/pad

WARNINGS ARE REALLY ERRORS <« 135

Keeping Your Balance

¢ Although we've been talking about compiled languages here, inter-
preted languages usually have a flag that enables run-time warn-
ings. Use that flag, and capture the output so you can identify—
end eliminate—the warnings.

* Some warnings can’t be stopped because of compiler bugs or prob-
lems with third-party tools or code. If it can’t be helped, don’t
waste further time on it. But this shouldn’t happen very often.

® You can usually instruct the compiler to specifically suppress
unavoidable warnings so you don’t have to wade through them
to find genuine warnings and errors.

* Deprecated methods have been deprecated for a reason. Stop
using them. At a minimum, schedule an iteration where they (and
their attendant warning messages) can be removed.

¢ If you mark methods you've written as deprecated, document what
current users should do instead and when the deprecated meth-
ods will be removed altogether.

CLIcK HERE to purchase this book now.


http://www.pragmaticprogrammer.com/titles/pad

ATTACK PROBLEMS IN IsoLATION <« 136

B> Attack Problems in Isolation
“Stepping line by line through a massive code base is pretty
scary. But the only way to debug a significant problem is to
look at the entire system. All at once. After all, you don’t know
where the problem may be, and that’s the only way to find it.”

One of the positive side effects of unit testing (Chapter 5, Agile Feed-
back, on page 76) is that it forces you to layer your code. To make your
code testable, you have to untangle it from its surroundings. If your
code depends on other modules, you’ll use mock objects to isolate it
from those other modules. In addition to making your code robust, it
makes it easier to locate problems as they arise.

Otherwise, you may have problems figuring out where to even start.
You might start by using a debugger, stepping through the code and
trying to isolate the problem. You may have to go through a few forms
or dialogs before you can get to the interesting part, and that makes
it hard to reach the problem area. You may find yourself struggling
with the entire system at this point, and that just increases stress and
reduces productivity.

Large systems are complicated—many factors are involved in the way
they execute. While working with the entire system, it’s hard to sepa-
rate the details that have an effect on your particular problem from the
ones that don't.

The answer is clear: don’t try to work with the whole system at once.
Separate the component or module you're having problems with from
the rest of the code base for serious debugging. If you have unit tests,
you're there already. Otherwise, you'll have to get creative.

For instance, in the middle of a time-critical project (aren’t they all?),
Fred and George found themselves facing a major data corruption prob-
lem. It took a lot of work to find what was wrong, because their team
didn’t separate the database-related code from the rest of the appli-
cation. They had no way to report the problem to the vendor—they
certainly couldn’t email the entire source code base to them!

So, they developed a small prototype that exhibited similar symptoms.
They sent this to the vendor as an example and asked for their expert
opinion. Working with the prototype helped them understand the
issues more clearly.

CLIcK HERE to purchase this book now.


http://www.pragmaticprogrammer.com/titles/pad

ATTACK PROBLEMS IN IsoLATION <« 137

Plus, if they weren’t able to reproduce the problem in the prototype,
it would have shown them examples of code that actually worked and
would have helped them isolate the problem.

The first step in identifying complex problems
is to isolate them. You wouldn't try to fix an Prototype to isolate
airplane engine in midair, so why would you
diagnose a hard problem in a part or component of your application
while it’s working inside the entire application? It’s easier to fix engines
when they're out of the aircraft and on the workbench. Similarly, it's
easier to fix problems in code if you can isolate the module causing the
problem.

But many applications are written in a way that makes isolation dif-
ficult. Application components or parts may be intertwined with each
other; try to extract one, and all the rest come along too.?2 In these
cases, you may be better off spending some time ripping out the code
that is of concern and creating a test bed on which to work.

Attacking a problem in isolation has a number of advantages: by isolat-
ing the problem from the rest of the application, you are able to focus
directly on just the issues that are relevant to the problem. You can
change as much as you need to get to the bottom of the problem—you
aren’t dealing with the live application. You get to the problem quicker
because you're working with the minimal amount of relevant code.

Isolating problems is not just something you do after the application
ships. Isolation can help us when prototyping, debugging, and testing.

Attack problems in isolation. Separate a problem area
from its surroundings when working on it, especially in a
large application.

What It Feels Like

When faced with a problem that you have to isolate, it feels like search-
ing for a needle in a tea cup, not a needle in a haystack.

2This is affectionately known as the “Big Ball of Mud” design antipattern.

CLIcK HERE to purchase this book now.


http://www.pragmaticprogrammer.com/titles/pad

ATTACK PROBLEMS IN IsoLATION < 138

Keeping Your Balance

¢ If you separate code from its environment and the problem goes
away, you've helped to isolate the problem.

* On the other hand, if you separate code from its environment
and the problem doesn’t go away, you've still helped to isolate
the problem.

¢ It can be useful to binary chop through a problem. That is, divide
the problem space in half, and see which half contains the prob-
lem. Then divide that half in half again, and repeat.

* Before attacking your problem, consult your log (see Practice 33,
Keep a Solutions Log, on page 129).

CLIcK HERE to purchase this book now.


http://www.pragmaticprogrammer.com/titles/pad

REPORT ALL EXCEPTIONS <« 139

B> Report All Exceptions

“Protect your caller from weird exceptions. It’s your job to han-
dle it. Wrap everything you call, and send your own exception §
up instead—or just swallow it.”

Part of any programming job is to think through how things should
work. But it’s much more profitable to think about what happens when
things don’'t work—when things don’t go as planned.

Perhaps you're calling some code that might throw an exception; in
your own code you can try to handle and recover from that failure. It’s
great if you can recover and continue with the processing without your
user being aware of any problem. If you can’t recover, it's great to let
the user of your code know exactly what went wrong.

But that doesn’t always happen. Venkat found himself quite frustrated
with a popular open-source library (which will remain unnamed here).
When he invoked a method that was supposed to create an object, he
received a null reference instead. The code was small, isolated, and
simple enough, so not a whole lot could've been messed up at the code
level. Still, he had no clue what went wrong.

Fortunately it was open source, so he downloaded the source code
and examined the method in question. It in turn called another
method, and that method determined that some necessary compo-
nents were missing on his system. This low-level method threw an
exception containing information to that effect. Unfortunately, the top-
level method quietly suppressed that exception with an empty catch
block and returned a null instead. The code Venkat had written had no
way of knowing what had happened; only by reading the library code
could he understand the problem and finally get the missing compo-
nent installed.

Checked exceptions, such as those in Java, force you to catch or prop-
agate exceptions. Unfortunately, some developers, maybe temporarily,
catch and ignore exceptions just to keep the compiler from complaining.
This is dangerous—temporary fixes are often forgotten and end up in
production code. You must handle all exceptions and recover from the
failures if you can. If you can’t handle it yourself, propagate it to your
method’s caller so it can take a stab at handling it (or gracefully com-

CLIcK HERE to purchase this book now.


http://www.pragmaticprogrammer.com/titles/pad

REPORT ALL EXCEPTIONS <« 140

municate the information about the problem to users; see Practice 37,
Provide Useful Error Messages, on the next page).

Sounds pretty obvious, doesn’t it? Well, maybe it’s not as obvious as
you think. A story in the news not long ago talked about a major failure
of a large airline reservations system. The system crashed, grounding
airplanes, stranding thousands of passengers, and snarling the entire
air transportation system for days. The cause? A single unchecked SQL
exception in an application server.

Maybe you'd enjoy the fame of being mentioned on CNN, but probably
not like that.

Handle or propagate all exceptions. Don’t suppress them,
even temporarily. Write your code with the expectation that
things will fail.

What It Feels Like

You feel you can rely on getting an exception when something bad hap-
pens. There are no empty exception handlers.

Keeping Your Balance

* Determining who is responsible for handling an exception is part
of design.

* Not all situations are exceptional.

* Report an exception that has meaning in the context of this code.
A NullPointerException is pretty but just as useless as the null object
described earlier.

¢ If the code writes a running debug log, issue a log message when
an exception is caught or thrown; this will make tracking them
down much easier.

* Checked exceptions can be onerous to work with. No one wants to
call a method that throws thirty-one different checked exceptions.
That’s a design error: fix it, don’t patch over it.

* Propagate what you can’t handle.

CLIcK HERE to purchase this book now.


http://www.pragmaticprogrammer.com/titles/pad

Now that you've gotten an introduction to the individual practices of an agile developer,
you may be interested in some of our other titles. For a full list of all of our current titles,
as well as announcements of new titles, please visit www.pragmaticprogrammer.com.

Ship [t!
B
ip

t! A Practical Guide to
Successful Software Projects

Q
R
S

Agility for teams. The next step from the
individual focus of Practices of an Agile Devel-
oper is the team approach that let’s you Ship
It!, on time and on budget, without excuses.
You'll see how to implement the common tech-
nical infrastructure that every project needs
along with well-accepted, easy-to-adopt, best-
of-breed practices that really work, as well as
common problems and how to solve them.

Ship It!: A Practical Guide to Successful
Software Projects

Jared Richardson and Will Gwaltney

(200 pages) ISBN: 0-9745140-4-7. $29.95

My Job Went to [ndia

World class career advice. The job market is
shifting. Your current job may be outsourced,
perhaps to India or eastern Europe. But you
can save your job and improve your career
by following these practical and timely tips.
See how to: e treat your career as a business
¢ build your own brand as a software devel-
oper e develop a structured plan for keeping
your skills up to date e market yourself to
your company and rest of the industry e keep
your job!

My Job Went to India: 52 Ways to Save
Your Job

Chad Fowler

(208 pages) 1SBN: 0-9766940-1-8. $19.95

MYJOB

WENT TOINDIA

(And All | Got Was /

This Lousy Bunk)/;’

- N\.‘/\‘ N

) Ways To Save Your Job

Chad Fowler

Visit our secure online store: http://pragmaticprogrammer.com/catalog


www.pragmaticprogrammer.com
http://pragmaticprogrammer.com/catalog

Learn how to use the popular Ruby programming language from the Pragmatic Program-
mers: your definitive source for reference and tutorials on the Ruby language and exciting
new application development tools based on Ruby.

The Facets of Ruby series includes the definitive guide to Ruby, widely known as the
PickAxe book, and Agile Web Development with Rails, the first and best guide to the
cutting-edge Ruby on Rails application framework.

Progranning Ry (he Pickx

The definitive guide to Ruby programming. _

e Up-to-date and expanded for Ruby ver-
sion 1.8. * Complete documentation of all the
built-in classes, modules, methods, and stan-
dard libraries. ¢ Learn more about Ruby’s The Pragmatic Programmers’ Guide
web tools, unit testing, and programming phi-

losophy.

Programming Ruby: The Pragmatic
Programmer’s Guide, 2nd Edition
Dave Thomas with Chad Fowler

and Andy Hunt

(864 pages) 1SBN: 0-9745140-5-5. $44.95

Agle Wieh Development with Ral

ile Web
evelopment
with ails

Pro%rS{)n;ning

A new approach to rapid web development.
Develop sophisticated web applications
quickly and easily ¢ Learn the framework of
choice for Web 2.0 developers ¢ Use incre-
mental and iterative development to create the
web apps that users want ¢ Get to go home
on time.

Agile Web Development with Rails:

A Pragmatic Guide

Dave Thomas and David Heinemeier Hansson
(570 pages) 1SBN: 0-9766940-0-X. $34.95

Visit our secure online store: http://pragmaticprogrammer.com/catalog


http://pragmaticprogrammer.com/catalog

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style, and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-
mers will be there with more titles and products to help programmers stay on top of their
game.

Practices of an Agile Developer Home Page
pragmaticprogrammer.com/titles/pad
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
pragmaticprogrammer.com/updates
Be notified when updates and new books become available.

Join the Community

pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
pragmaticprogrammer.com/news
Check out the latest pragmatic developments in the news.

If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/titles/pad.

Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www . pragmaticprogrammer.com/catalog
Customer Service: orders@pragmaticprogrammer.com
Non-English Versions: translations@pragmaticprogrammer.com
Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com


pragmaticprogrammer.com/titles/pad
www.pragmaticprogrammer.com/catalog

	Agile Software Development
	Beginning Agility
	Work for Outcome
	Quick Fixes Become Quicksand
	Criticize Ideas, Not People
	Damn the Torpedoes, Go Ahead

	Feeding Agility
	Keep Up with Change
	Invest in Your Team
	Know When to Unlearn
	Question Until You Understand
	Feel the Rhythm

	Delivering What Users Want
	Let Customers Make Decisions
	Let Design Guide, Not Dictate
	Justify Technology Use
	Keep It Releasable
	Integrate Early, Integrate Often
	Automate Deployment Early
	Get Frequent Feedback Using Demos
	Use Short Iterations, Release in Increments
	Fixed Prices Are Broken Promises

	Agile Feedback
	Put Angels on Your Shoulders
	Use It Before You Build It
	Different Makes a Difference
	Automate Acceptance Testing
	Measure Real Progress
	Listen to Users

	Agile Coding
	Program Intently and Expressively
	Communicate in Code
	Actively Evaluate Trade-Offs
	Code in Increments
	Keep It Simple
	Write Cohesive Code
	Tell, Don't Ask
	Substitute by Contract

	Agile Debugging
	Keep a Solutions Log
	Warnings Are Really Errors
	Attack Problems in Isolation
	Report All Exceptions
	Provide Useful Error Messages

	Agile Collaboration
	Schedule Regular Face Time
	Architects Must Write Code
	Practice Collective Ownership
	Be a Mentor
	Allow People to Figure It Out
	Share Code Only When Ready
	Review Code
	Keep Others Informed

	Epilogue: Moving to Agility
	Just One New Practice
	Rescuing a Failing Project
	Introducing Agility: The Manager's Guide
	Introducing Agility: The Programmer's Guide
	The End?

	Resources
	On the Web
	Bibliography




